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ADSP-BF606/BF607/BF608/BF609 Silicon Anomaly List

SUMMARY OF SILICON ANOMALIES

The following table provides a summary of ADSP-BF606/BF607/BF608/BF609 anomalies and the applicable silicon revision(s) for each
anomaly.

No. | ID Description 0.1 | 0.2
1 16000003 | TRU_STAT.ADDRERR and TRU_ERRADDR.ADDR May Not Reflect the Correct Status X X
2 16000007 | DDR2 Memory Reads May Fail Intermittently X X
3 16000008 | Instruction Memory Stalls Can Cause IFLUSH to Fail X X
4 16000009 | TESTSET Instruction Cannot Be Interrupted X X
5 16000010 | IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall X X
6 16000011 | False Hardware Error when RETI Points to Invalid Memory X X
7 16000012 | Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors X X
8 16000013 | False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory X X
9 16000014 | False Hardware Error from an Access in the Shadow of a Conditional Branch X X
10 | 16000015 | Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported X X
11 | 16000017 | Speculative Fetches Can Cause Undesired External FIFO Operations X X
12 | 16000024 | Spurious Fault Signaled After Clearing an Externally Generated Fault X X
13 | 16000025 | SPORT May Drive Data Pins During Inactive Channels in Multichannel Mode X X
14 | 16000033 | PPl Data Underflow on First Word Not Reported in Certain Modes X X
15 | 16000039 | CGU_STAT.PLOCKERR Bit May be Unreliable X X
16 | 16000040 | JTAG Emulator Reads of SDU_IDCODE Alter Register Contents X X
17 | 16000041 | IFLUSH Instruction Causes Parity Error When Parity Is Enabled X
18 | 16000042 | Instruction Cache Failure When Parity Is Enabled X
19 | 16000043 | Hardware Loop Can Underflow Under Specific Conditions X X

Key: x = anomaly exists in revision
.= Not applicable
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Silicon Anomaly List ADSP-BF606/BF607/BF608/BF609

DETAILED LIST OF SILICON ANOMALIES

The following list details all known silicon anomalies for the ADSP-BF606/BF607/BF608/BF609 including a description, workaround, and
identification of applicable silicon revisions.

1. 16000003 - TRU_STAT.ADDRERR and TRU_ERRADDR.ADDR May Not Reflect the Correct Status:

DESCRIPTION:
TRU_STAT.ADDRERR and TRU_ERRADDR.ADDR show an error even if a valid address is written to the TRU address range.

WORKAROUND:
Do not depend on the values in TRU_STAT.ADDRERR and TRU_ERRADDR.ADDR.

APPLIES TO REVISION(S):
0.1, 0.2

2. 16000007 - DDR2 Memory Reads May Fail Intermittently:

DESCRIPTION:
DDR2 memory reads may fail intermittently using the DMC_TR2.TRTP (tRTP) minimum setting recommended in the Hardware Reference
manual.

WORKAROUND:
Increase DMC_TR2.TRTP to a minimum of 5. If the DMC_TR2.TRTP calculation (using the memory manufacturer tRTP specification and the
DCLK frequency) yields a result above 5, this higher DMC_TR2.TRTP value should be used.

APPLIES TO REVISION(S):
0.1, 0.2

3. 16000008 - Instruction Memory Stalls Can Cause IFLUSH to Fail:

DESCRIPTION:

When an instruction memory stall occurs when executing an IFLUSH instruction, the instruction may fail to invalidate a cache line. This
could be a problem when replacing instructions in memory and could cause stale, incorrect instructions in cache to be executed rather
than initiating a cache line fill.

WORKAROUND:

Instruction memory stalls must be avoided when executing an IFLUSH instruction. By placing the IFLUSH instruction in L1 memory, the
prefetcher will not cause instruction cache misses that could cause memory stalls. In addition, padding the IFLUSH instruction with NOPs
will ensure that subsequent IFLUSH instructions do not interfere with one another, and wrapping SSYNCs around it ensures that any fill/
victim buffers are not busy. The recommended routine to perform an IFLUSH is:

SSYNGC; /1 Ensure all fill/victimbuffers are not busy
LSETUP (LS, LE)
LS: | FLUSH;
NOP;
NOP;
LE:  NOP;
SSYNC; /1 Ensure all fill/victimbuffers are not busy

Since this loop is four instructions long, the entire loop fits within one loop buffer, thereby turning off the prefetcher for the duration of
the loop and guaranteeing that successive IFLUSH instructions do not interfere with each other.

APPLIES TO REVISION(S):
0.1, 0.2
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4. 16000009 - TESTSET Instruction Cannot Be Interrupted:

DESCRIPTION:

When the TESTSET instruction gets interrupted, the write portion of the TESTSET may be stalled until after the interrupt is serviced. After
the ISR completes, application code continues by reissuing the previously interrupted TESTSET instruction, but the pending write
operation is completed prior to the new read of the TESTSET target data, which can lead to deadlock conditions.

For example, in a multi-threaded system that utilizes semaphores, thread A checks the availability of a semaphore using TESTSET. If this
original TESTSET operation tested data with a low byte of zero (signifying that the semaphore is available), then the write portion of
TESTSET sets the MSB of the low byte to 1 to lock the semaphore. When this anomaly occurs, the write doesn't happen until TESTSET is re-
issued after the interrupt is serviced. Therefore, thread A writes the byte back out with the lock bit set and then immediately reads that
value back, now erroneously indicating that the semaphore is locked. Provided the semaphore was actually still free when TESTSET was
reissued, this means that the semaphore is now permanently locked because thread A thinks it was locked already, and any other threads
that subsequently pend on the same semaphore are being locked out by thread A, which will now never release it. The same applies to a
semaphore that is shared between multiple cores within the same device.

WORKAROUND:
The TESTSET instruction must be made uninterruptible to avoid this condition:

CLl RO;
TESTSET( PO) ;
STl RO;

There is no workaround other than this, so events that cannot be made uninterruptible, such as an NMI or an Emulation event, will always
be sensitive to this issue. Additionally, due to the need to disable interrupts, User Mode code cannot implement this workaround.

APPLIES TO REVISION(S):
0.1, 0.2

5. 16000010 - IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall:

DESCRIPTION:
If the IFLUSH instruction is placed on a loop end, the processor will stall indefinitely. For example, the following two code examples will
never exit the loop:

PL = 2;
LSETUP (LOOP1_S, LOOP1_E) LCl = Pi;
LOOP1_S: NOP;

LOOP1_E: | FLUSH] PO++] ;

LSETUP (LOOP2_S, LOOP2_E) LCL = Pi;

LOOP2_S: NOP; NOP; NOP; NOP; , /1 Any nunber of instructions...
LOOP2_E: | FLUSH] PO++];

WORKAROUND:
Do not place the IFLUSH instruction at the bottom of a hardware loop. If the IFLUSH is padded with any instruction at the bottom of the
loop, the problem is avoided:

LSETUP (LOOP_S, LOOP E) LCl = PI1;

LOOP_S: | FLUSH] PO++] ;
LOOP_E: NOP; /1 Pad the | oop end

APPLIES TO REVISION(S):
0.1, 0.2
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6. 16000011 - False Hardware Error when RETI Points to Invalid Memory:

DESCRIPTION:

When using CALL/JUMP instructions targeting memory that does not exist, a hardware error condition will be triggered. If interrupts are
enabled, the Hardware Interrupt (IRQ5) will fire. Since the RETI register will have an invalid location in it, it must be changed before
executing the RTl instruction, even if servicing a different interrupt. Consider the following sequence:

P2.L = LO (OxFFAFFFFC); // Load Address in Illegal Menory to P2

P2.H = H (OxFFAFFFFC);

CALL(P2); /1 Call to Bad Address Generates Hardware Error | RQ
| RQG_code: /1 Hardware Error Interrupt Routine

RAI SE 14; 11 (1)

RTI ; I (2)

| RQL4_code:

[--SP] = ( R7:0, P5:0); // (3)

[--SP] = RETI; 11 (4)

When the hardware error occurs, the program counter points to the invalid location OxFFAFFFFC, which is loaded into the RETI register
during the service of the IRQ5 hardware error event. When the RTl instruction (2) is executed, a fetch of the instruction pointed to by the
RETI register, which is an illegal address, is requested before hardware sees the level 14 interrupt pending. This fetch causes another
hardware error to be latched, even though this instruction is not executed. Execution will go to IRQ14 (3). As soon as interrupts are re-
enabled (4), the pending hardware error will fire.

WORKAROUND:
1. Ensure that code doesn't jump to or call bad pointers.

2. Always set the RETI register when returning from a hardware error to something that will not cause a hardware error on the memory fetch.

APPLIES TO REVISION(S):
0.1, 0.2
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7. 16000012 - Speculative Fetches of Indirect-Pointer Instructions Can Cause False Hardware Errors:

DESCRIPTION:

A false hardware error is generated if there is an indirect jump or call through a pointer which may point to reserved or illegal memory on
the opposite control flow of a conditional jump to the taken path. This commonly occurs when using function pointers, which can be
invalid (e.g., set to -1). For example:

CC = P2 == -0x1;
| F CC JUMP ski p;
CALL (P2);

ski p:
RTS;

Before the IF CC JUMP instruction can be committed, the pipeline speculatively issues the instruction fetch for the address at -1 (0xffffffff)
and causes the false hardware error. It is a false hardware error because the offending instruction is never actually executed. This can
occur if the pointer use occurs within two instructions of the conditional branch (predicted not taken), as follows:

BRCC X [ predicted not taken]

Y: JUW (P-reg); // If either of these two p-regs describe non-existent
CALL (P-reg); [// menory, such as external SDRAM when the SDRAM

X RTS; /'l controller is off, then a hardware error will result.

WORKAROUND:
If instruction cache is on or the ICPLBs are enabled, this anomaly does not apply.

If instruction cache is off and ICPLBs are disabled, the indirect pointer instructions must be 2 instructions away from the branch
instruction, which can be implemented using NOPs:

BRCC X [predicted not taken]

Y: NOP; /1 These two NOPs will properly pad the indirect pointer
NOP; // used in the next I|ine.
JUWP (P-regq);
CALL (P-regq);

X RTS;

APPLIES TO REVISION(S):
0.1, 0.2

8. 16000013 - False Hardware Errors Caused by Fetches at the Boundary of Reserved Memory:

DESCRIPTION:
Due to fetches near boundaries of reserved memory, a false Hardware Error (External Memory Addressing Error) is generated under the
following conditions:

1. A single valid CPLB spans the boundary of the reserved space. For example, a CPLB with a start address at the beginning of L1 instruction
memory and a size of 4MB will include the boundary to reserved memory.

2. Two separate valid CPLBs are defined, one that covers up to the byte before the boundary and a second that starts at the boundary itself.
For example, one CPLB is defined to cover the upper 1kB of L1 instruction memory before the boundary to reserved memory, and a
second CPLB is defined to cover the reserved space itself.

As long as both sides of the boundary to reserved memory are covered by valid CPLBs, the false error is generated. Note that this anomaly
also affects the boundary of the L1_code_cache region if instruction cache is enabled. In other words, the boundary to reserved memory,
as described above, moves to the start of the cacheable region when instruction cache is turned on.

WORKAROUND:
Leave at least 76 bytes free before any boundary with a reserved memory space. This will prevent false hardware errors from occurring.

APPLIES TO REVISION(S):
0.1, 0.2
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9. 16000014 - False Hardware Error from an Access in the Shadow of a Conditional Branch:

DESCRIPTION:
If a load accesses reserved or illegal memory on the opposite control flow of a conditional jump to the taken path, a false hardware error
will occur.

The following sequences demonstrate how this can happen:

Sequence #1:

For the "predicted not taken" branch, the pipeline will load the instructions that sequentially follow the branch instruction that was
predicted not taken. By the pipeline design, these instructions can be speculatively executed before they are aborted due to the branch
misprediction. The anomaly occurs if any of the three instruction slots following the branch contain loads which might cause a hardware
error:

BRCC X [ predicted not taken]

RO = [PO]; /1 |f any of these three | oads accesses non-exi stent
Rl = [P1]; /1 menmory, such as external SDRAM when the SDRAM
R2 = [P2]; // controller is off, then a hardware error will result.

Sequence #2:
For the "predicted taken" branch, the one instruction slot at the destination of the branch cannot contain an access which might cause a
hardware error:

BRCC X (BP)
Yoo,
X: RO = [PO]; // If this instruction accesses non-existent menory,

/1 such as external SDRAM when t he SDRAM control |l er
/]l is off, then a hardware error will result.

WORKAROUND:

If you are programming in assembily, it is necessary to avoid the conditions described above.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices, please consult the "Silicon Anomaly Tools Support" help page in the applicable

documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.1, 0.2
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10. 16000015 - Multi-Issue Instruction with dsp32shiftimm in slot1 and P-reg Store in slot2 Not Supported:

DESCRIPTION:
A multi-issue instruction with dsp32shiftimm in slot 1 and a P register store in slot 2 is not supported. It will cause an exception.

The following type of instruction is not supported because the P3 register is being stored in slot 2 with a dsp32shiftimm in slot 1:
RO = RO << Ox1 || [ PO] = P3 || NOP; /1 Not Supported - Exception

This also applies to rotate instructions:
RO = ROT RO by Ox1 || [ PO] = P3 || NOP;, // Not Supported - Exception

Examples of supported instructions:

RO =RO<<Oxl1 || [ PO] =RL || NOP,

RO =RO<<Oxl1 || RL=[ PO] || NOP;

RO=RO<<Oxl || PB=[ PO] || NOP;

RO = ROT RO by RO.L || [ PO] = P3 || NOP,
WORKAROUND:

In assembly programs, separate the multi-issue instruction into 2 separate instructions.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices, please consult the "Silicon Anomaly Tools Support" help page in the applicable
documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.1, 0.2
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11. 16000017 - Speculative Fetches Can Cause Undesired External FIFO Operations:

DESCRIPTION:

When an external FIFO device is connected to an asynchronous memory bank, memory accesses can be performed by the processor
speculatively, causing improper operations because the FIFO will provide data to the Blackfin, and the data will be dropped whenever the
fetch is made speculatively or if the speculative access is canceled. "Speculative" fetches are reads that are started and killed in the
pipeline prior to completion. They are caused by either a change of flow (including an interrupt or exception) or when performing an
access in the shadow of a branch. This behavior is described in the Blackfin Programmer's Reference.

Another case that can occur is when the access is performed as part of a hardware loop, where a change of flow occurs from an exception.
Since exceptions can't be disabled, the following example shows how an exception can cause a speculative fetch, even with interrupts
disabled:

CLI R3; /* Disable Interrupts */
LSETUP( | oop_s, loop_e) LCO = P2;
| oop_s: RO = WPO]; /* Read froma FIFO Device */
| oop_e: WP1++] = RO; /* Wite that CGenerates a Data CPLB Page M ss */
STl R3; /* Enable Interrupts */
RTS;

In this example, the read inside the hardware loop is made to a FIFO with interrupts disabled. When the write inside the loop generates a
data CPLB exception, the read inside the loop will be done speculatively.

WORKAROUND:
First, if the access is being performed with a core read, turn off interrupts prior to doing the core read. The read phase of the pipeline must
then be protected from seeing the read instruction before interrupts are turned off:

CLlI RO;

NOP; NOP; NOP; /* Can Be Any 3 Instructions */
Rl = [PO];

STl RO;

To protect against an exception causing the same undesired behavior, the read must be separated from the change of flow:

CLlI R3; /* Disable Interrupts */
LSETUP( | oop_s, loop_e) LCO = P2;
| oop_s: NOP; /* 2 NOPs to Pad Read */
NOP;
RO = WPO];
| oop_e: WP1++] = RO;
STl R3; /* Enable Interrupts */

RTS;
The loop could also be constructed to place the NOP padding at the end:

LSETUP( .Lword_l oop_s, .Lword_|loop_e) LCO = P2;
.Lword_l oop_s: RO = WPO];
W P1++] = RO;
NOP; /* 2 NOPs to Pad Read */
. Lword_I| oop_e: NOP;

Both of these sequences prevent the change of flow from allowing the read to execute speculatively. The 2 inserted NOPs provide
enough separation in the pipeline to prevent a speculative access. These NOPs can be any two instructions.

Reads performed using a DMA transfer do not need to be protected from speculative accesses.

APPLIES TO REVISION(S):
0.1, 0.2
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12. 16000024 - Spurious Fault Signaled After Clearing an Externally Generated Fault:

DESCRIPTION:

A spurious fault will be indicated for a single SCLKO period on SYS_FAULT and SYS_FAULT under the following conditions:
1. SEC_FCTL.FIEN and SEC_FCTL.FOEN are set.
2. An external device signals a fault on SYS_FAULT or SYS_FAULT.
3. The external fault is cleared by writing 0x00010000 to SEC_FEND.

WORKAROUND:
Clear SEC_FCTL.FIEN before writing to SEC_FEND to clear an externally signaled fault:
1. SEC_FCTL.FIEN and SEC_FCTL.FOEN are set.
2. An external device signals a fault on SYS_FAULT or SYS_FAULT.
3. Clear SEC_FCTL.FIEN
4. Clear the external fault by writing 0x00010000 to SEC_FEND.
5. Set SEC_FCTL.FIEN

APPLIES TO REVISION(S):
0.1, 0.2

13. 16000025 - SPORT May Drive Data Pins During Inactive Channels in Multichannel Mode:

DESCRIPTION:
When a SPORT is operating in multichannel mode, the transmitter tri-states the data pins during the inactive channels. When SPMUX
functionality is enabled, under specific conditions, one SPORT half may continue to drive on the inactive channels. This happens when all
the below conditions are true.
1. SPORT half "x" is configured as transmitter (SPORT_CTL_x.SPTRAN = 1)
2. Imports Frame sync internally from the pairing half SPORT (SPORT_CTL2_x.FSMUXSEL = 1).
. Multichannel Frame Delay is zero (SPORT_MCTL_x.MFD = 0)
. Window Offset is zero (SPORT_MCTL_x.OFFSET = 0)
. Channel-0 of multichannel frame is enabled for transmission (SPORT_CS0_x.CHO = 1)
. Frame sync is active low (SPORT_xCTL.LFS = 1)
. Frame Sync edge Detect bit is 0 (SPORT_CTL_x.FSED = 0)

NO v bW

If any of these conditions is false, this anomaly does not occur.

When this exact configuration is used, after completion of all the active channels, the SPORT half transmitter drives the first bit of next
word to be transmitted once the number of channels specified in WSIZE expires. Therefore the SPORT half may drive on inactive channels
which can cause contention when other transmitters configured to drive on these inactive channels.

WORKAROUND:

Avoid any one of the above conditions. For example:
1. Set the Frame Sync edge Detect bit (SPORT_CTL_x.FSED = 1).
2. Use Window Offset other than zero.
3. Use Multichannel Frame Delay other than zero.

APPLIES TO REVISION(S):
0.1, 0.2

14. 16000033 - PPl Data Underflow on First Word Not Reported in Certain Modes:

DESCRIPTION:
In PPl transmit modes with external frame sync(s) PPI_STAT.CFIFOERR and PPI_STAT.YFIFOERR aren't reported reliably if the first data
word underflows. If the second data word to be transmitted also underflows, PPl reports the underflow error correctly.

WORKAROUND:
Use the second data word underflow notification to take any required action or use a different PPl mode.

APPLIES TO REVISION(S):
0.1, 0.2
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15. 16000039 - CGU_STAT.PLOCKERR Bit May be Unreliable:

DESCRIPTION:
The CGU_STAT.PLOCKERR bit may not be set in the case of the PLL failing to lock at the programmed frequency. However, as expected,
CGU_STAT.PLOCKERR will not assert when a PLL lock is successful.

WORKAROUND:

Do not depend on CGU_STAT.PLOCKERR to detect failure of the PLL to lock. In the case of safety-critical systems SYS_CLKOUT or any other
internally clocked output may be monitored to ensure that no software or hardware issue has prevented the PLL from locking at the
programmed frequency.

APPLIES TO REVISION(S):
0.1, 0.2

16. 16000040 - JTAG Emulator Reads of SDU_IDCODE Alter Register Contents:

DESCRIPTION:
After connecting to the processor using an emulator debug session, the value stored in SDU_IDCODE will be read as 0x00000000 if the
JTAG emulator does not reload the correct value after reading.

WORKAROUND:
There are three possible workarounds:

1. Read SDU_IDCODE before connecting with an emulator debug session.

2. Use a development tool chain that reloads the SDU_IDCODE after reading. For tool chains and operating systems supported by Analog
Devices (CrossCore Embedded Studio, the GNU Tool Chain, and the Linux kernel), please consult the "Silicon Anomaly Tools Support”
help page in the applicable documentation and release notes for details. For all other tool chains and operating systems, see the
appropriate supporting documentation for details.

3. Read a different register to distinguish between silicon revisions, if such register differences (shown in this list) exist between the silicon
revisions of interest.

APPLIES TO REVISION(S):
0.1, 0.2
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17. 16000041 - IFLUSH Instruction Causes Parity Error When Parity Is Enabled:

DESCRIPTION:

Executing IFLUSH with instruction cache and parity enabled (assuming the valid bit is active on the cache line in question) will result in
incorrect parity being generated due to the clearing of the valid bit in the cache TAG without changing the parity bit appropriately. The
next time that location is accessed, a parity error will be generated.

This anomaly does not apply to data cache.

WORKAROUND:
The ITEST_COMMAND functionality can be used as a substitute for the IFLUSH instruction, as the cache tag parity is recalculated in

hardware when the tag is written via the ITEST_COMMAND register. For example, consider the pseudo-code:

| FLUSH( f | ush_addr);

The above functionality can be achieved by manually snooping the cache tag arrays to locate where in the cache it resides and
invalidating that line:

vol atile char i;
int itest_cnd, itest_datao0;

for(i =0; i < 4; i++)
{
itest_cmd = ((i<<26) | ((flush_addr & 0x00003000)<<4) | (flush_addr & 0x000003EO));
/* | TEST_COVMAND[ 27: 26] WAY # (loop count i) */

/* | TEST_COVNAND[ 17: 16] flush_addr[13:12] */

/* | TEST_COVMAND[ 09: 05] fl ush_addr[ 09: 05] */
*pl TEST_COVMVAND = itest_cnd; /* wite to command register */
ssync(); /* must be foll owed by ssync */
itest_data0 = *pl TEST_DATAOQ; /* Get Cache Tag */

ssync();

/* Check for valid bit AND address match (bits 31:14 and bits 11:10) */
if( (itest_data0 & 1) && ( (itest_data0 & OxFFFFCC00) == (flush_addr & OxFFFFCC00) ) )

/* Clear bit 0 to invalidate the line */
*pl TEST_DATAO = itest_data0 & OxFFFFFFFE;
ssync();

/* Change command to cache tag wite */
*pl TEST_COMVAND = itest_cnmd | 0x00000002;
ssync();
br eak; /* Wei¢Ywe done what we need to do, so exit */
} /* if no tag match or not valid, do nothing */
} /* if no ways hit, do nothing */

APPLIES TO REVISION(S):
0.1
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18. 16000042 - Instruction Cache Failure When Parity Is Enabled:

DESCRIPTION:

When parity checking is enabled, an instruction cache line fill can be abandoned if a change in control occurs on the processor when the
cache line fill is initiated with a particular cycle alignment relative to the cache fill initiation. When this failure occurs, the cache line is
marked valid for the corresponding cache TAG, but the cache line fill itself does not happen. As a result, the processor executes the stale
cached instruction rather than the one that should have been there had the new cache line been filled properly.

This anomaly does not apply to data cache.

WORKAROUND:
There is no workaround possible to keep both instruction cache and parity enabled. If either is disabled, this anomaly will not occur.

APPLIES TO REVISION(S):
0.1

19. 16000043 - Hardware Loop Can Underflow Under Specific Conditions:

DESCRIPTION:
When two consecutive hardware loops are separated by a single instruction, and the two hardware loops use the same loop registers, and
the first loop contains a conditional jump to its loop bottom, the first hardware loop can underflow. For example:

PO = 16;
LSETUP(| oop_t opl, |oop_bottonl), LCO = PO;
| oop_t opl: nop;
if CC JUW | oop_bottomt;
nop;
nop;

| oop_bottonl: nop;
nop; /1 Any single instruction

LSETUP(| oop_t op2, | oop_bottonR), LCO = PO;
| oop_t op2: nop;
| oop_botton2: nop;

If a stall occurs on the instruction that is between the two loops, the top loop can decrement its loop count from 0 to OxFFFFFFFF and
continue looping with the incorrect loop count.

WORKAROUND:
There are several workarounds to this issue:

1) Do not use the same loop register set in consecutive hardware loops.
2) Ensure there is not exactly one instruction between consecutive hardware loops.
3) Ensure the first loop does not conditionally jump to its loop bottom.

APPLIES TO REVISION(S):

0.1, 0.2
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